

No.46 - September 27, 2018

マントル深部からのダイヤモンド

Diamonds originated from the lower part of mantle

鍵 裕之 東京大学大学院理学系研究科

宝石の代表選手であるダイヤモンドは、砂川一郎先生(1924-2012)によって「地下からの手紙」と 表現された。ダイヤモンドを入念に観察することで、ダイヤモンドの中に秘められた「手紙」を読み解き、 地球深部の情報を知ることができると言う意味であろう。これまで天然ダイヤモンドの研究から、地球内 部を構成する物質の理解が飛躍的に進展してきた。特に近年になって、マントル遷移層から下部マント ルに由来する超深部起源ダイヤモンドの研究が盛んに行われている。天然ダイヤモンド、特に超深部起 源ダイヤモンドに関連する地球内部科学の最近の研究動向について述べたい。

地球内部はどのような構造で、どのような物質でできているのか?教科書を開けば、地表から地殻、 マントル(上部マントル、マントル遷移層、下部マントル)、核(外核、内核)という層構造をとると書 かれている(図1)¹¹。もちろんそれぞれの層に境界線があるわけではない。これらの層の境界では物 質の密度が不連続的に変化しているため、不連続面とも呼ばれている。このような地球内部の密度構造 は、地震波が伝搬する速度が地球内部で変化する様子から求められた。物質の密度は、物質を構成す る元素組成によって変化する。重い元素(例えば鉄)が主成分になれば密度は高くなるし、比較的軽い 元素(例えばマグネシウム)が主成分になれば密度は低くなる。一方、化学組成が同じであっても結晶 構造が変化すれば密度も変化する。地震波伝搬速度の観測から地球内部の密度分布がわかっても、密 度の変化が化学組成によってもたらされたのか、結晶構造の変化によってもたらされているかはわからな い。地震波伝搬速度の解析に加えて、高温高圧実験、ダイヤモンドに代表される地球深部起源の天然試 料の観察がまさに三位一体となって地球深部科学を発展させてきた。

高温高圧実験では、地球深部に相当する温度・圧力を実験室で再現して、地球深部に存在しうる鉱物 を推定することができる。高温高圧実験には大型のマルチアンビル高圧発生装置(図2)やダイヤモン ドアンビルセル(図3)を用いる。高温高圧から急冷回収された試料を様々な手法を用いて分析するこ とも多いが、常温常圧条件では不安定な鉱物もある。そのような場合は SPring-8 や KEK Photon Factory に代表される放射光実験施設で得られる指向性が高く、細い X 線ビームを用いて、高温高圧の 状態のままで X 線回折を測定し、マントルに相当する条件で鉱物の結晶構造の解析が行われている。ま た、X 線回折では決定することが困難な結晶中の水素原子の位置を決定するためには、中性子回折の 測定が不可欠である。中性子回折の散乱強度は元素の電子数に依存しないため、水素を代表とする軽 元素の位置決定や Mg²⁺, Al³⁺, Si⁴⁺などの等電子数イオンを区別することが可能である。茨城県東海村 に建設された大強度陽子加速器施設(J-PARC)の物質・生命科学実験施設(MLF)に、超高圧中性子 回折装置 PLANET (Pressure-leading apparatus for neutron diffraction)が稼働している^[2](図4)。

-1-

図1 地球内部の層構造(図の作成は 大学院生 福山鴻君による。右図(A,B, C)は Bass and Parise (2008)から の抜粋)

- 2 -

図 2 マルチアンビル高圧発生装置。 愛媛大学地球深部ダイナミクスセンター に設置されている ORANGE 3000

図 3 研究室で使用しているダイヤモンドアンビルセル。外形は約 70 mm。(左) セルの外観。3本のネジで加圧していく。(右) セルの内部。上下に1対のダイヤモンドアンビルが装着されている

図 4 大強度陽子加速器施設(J-PARC)の物質・生命科学実験施設(MLF)に設置された超高圧 中性子回折装置 PLANET (左) ビームラインの外観(右) PLANET ビームラインに設置された大型マ ルチアンビル高圧発生装置(圧姫)

冒頭に述べたとおり、ダイヤモンドは地下からの手紙である。手紙に書かれた文字が、ダイヤモンド の結晶に取り込まれている鉱物や流体などの包有物(inclusion)と考えることもできる。包有物とはダ イヤモンドが地球深部で結晶成長する際に周囲からダイヤモンドの結晶内部に取り込まれたものである。 ダイヤモンドの熱力学的安定領域を考えると、ダイヤモンドは深さ 150 km 以上のマントルで生成したこ とになるので、ダイヤモンド中の包有物はマントルに存在している物質を取り込んだと考えられる。ダイ ヤモンドは最も硬い物質であるため破壊されにくく、また極端な酸化的条件でない限り反応することがな いため化学的にもきわめて安定な物質である。したがって、天然ダイヤモンドは地球深部物質を包有物 として安定に地表まで運ぶことができる頑丈なカプセルであり、貴重な研究試料である。地球深部で取り 込まれた包有物の周囲にはギガパスカル(GPa)オーダーの圧力が残っている。図5に示すように地球 内部でダイヤモンド中に包有物が取り込まれたときには、包有物と周囲のダイヤモンドは力学的につり 合った状態にある。地球深部から地表にダイヤモンドが上昇する際に温度が下がるため包有物もダイヤ モンドも体積が減少する。また、圧力が低下するため包有物もダイヤモンドも体積が増加する。包有物 とダイヤモンドの熱膨張率、圧縮率はそれぞれ異なり、地表に上がると包有物の方が周囲のダイヤモン ドよりも体積が大きくなるため、包有物周辺には圧力がかかる。このことを初めて報告したのは Navon (1991) で、ダイヤモンド中の石英包有物に帰属される赤外吸収スペクトルが高波数側へシフトすること から残留圧力(約1GPa)を求めた^[3]。天然ダイヤモンドの包有物として、固体二酸化炭素^[4]、氷 VI 相 🗉、氷 VII 相 🖻 などいずれも常圧下では存在できない高圧相が報告されている。これらの包有物はダ イヤモンドが生成したマントル中に二酸化炭素や水といった揮発性物質が存在した直接的な証拠となっ ている。図6と図7に筆者らが測定したダイヤモンドのラマンスペクトルの2次元マッピングを示す。包 有物周辺に圧力が残留している様子がわかる。このようにダイヤモンド中の包有物そのもの、あるいは 周辺のダイヤモンドに蓄積された圧力を検出するにはラマン分光法が有益である。もちろん X 線回折に よって鉱物あるいはダイヤモンドの格子パラメーターを求めても良い。圧力がかかっていれば物質の硬さ に応じて格子パラメーターが小さくなるはずである。しかし、圧力検出の感度、そして空間分解能という 意味でラマン分光法の方が圧倒的に有利である。

図 5 横軸に温度、縦軸に圧力を取った状態図。右上に位置する高温高圧状態にある地球深部でダイ ヤモンドが成長し、周囲に存在していた包有物を取り込む。地表に上がる過程で包有物とホストダイヤモ ンドの熱膨張係数、圧縮率の違いから包有物に圧力が生じる。

-4 -

図 6 ダイヤモンド中に含まれるクロムスピネルとかんらん石の包有物。ダイヤモンドのラマンスペクトルの2次元マッピングを取ると包有物周辺に圧力が残留している様子がわかる。(Kagi et al., 2009 より^[21])

図 7 Sao-Luiz 産下部マントルダイヤモンドに含まれるブリッジマナイト包有物(左)EBSD マップ。色の変化はダイヤモンドの結晶方位のずれを示している。(右)ラマンスペクトルの 2 次元マッピング (Cayzer et al., 2008 より^[22])

ごく最近発見された氷 VII 相の包有物には 10 GPa にも及ぶ圧力が残留しており、水が包有物として ダイヤモンドに取り込まれた圧力(ダイヤモンドが生成した圧力)を復元すると 24 GPa となり、このダ イヤモンドが下部マントルに起源をもつことも明らかになった。下部マントルに水が存在していた直接的 な証拠と考えることもできるが、取り込まれた包有物が地上に上昇する過程でダイヤモンド内部において 脱水反応を起こして水を生成したという可能性も否定できない。2018 年 8 月にボストンで開かれた Goldschmidt Conference でも Tschauner による氷 VII 発見に関する研究発表があった。Navon 教授 (前述のようにダイヤモンド中の包有物に圧力がかかっていることを最初に報告した研究者)と意見交換 を行ったが、ダイヤモンド中に純粋な氷が存在することはとても不思議(信じがたい)と感じた。ダイヤ モンド中の流体包有物にはカリウムイオンや塩化物イオンが含まれていることが一般的であるからだ。

多くの天然ダイヤモンドは深さ 150 km から 200 km の上部マントルに起源をもつが、上に述べたよ うにマントル遷移層(深さ 410 km~660 km)や下部マントル(深さ 660 km~2890 km)に由来す る 包 有 物 を 取 り 込ん だ 超 深 部 起 源 ダイヤ モンド(英 語 で は super-deep diamond ある い は sublithospheric diamond とよばれる)に関する研究も最近は多数報告されている。高温高圧実験と 地震波伝搬速度の観測から、下部マントルの主要構成鉱物はフェロペリクレース(化学式は(Mg, Fe) 0)とブリッジマナイト(MgSiO₃)であることがわかっているので、これらの鉱物組み合わせがダイヤモ ンド中の包有物として発見できれば、そのダイヤモンドは下部マントルに起源を持つと推定することがで きる。Scott Smith et al. (1984)は、最初にこれらの下部マントル鉱物を南アフリカの Koffifontein キンバライトパイプから産出されたダイヤモンドから発見した¹⁷¹。その後 1990年代に入り、ブラジルか ら多くの下部マントル起源のダイヤモンドが発見された^[8]。超深部起源ダイヤモンドに関しては優れたレ ビュー論文がいくつか出版されているので、専門的な詳細についてはそちらを参照されたい^[9,10]。 2018 年に入って、これまで見つかっていなかった CaSiO₃ ペロブスカイトが天然ダイヤモンド中の包有 物として発見された^[11]。ホスト鉱物であるダイヤモンドの炭素同位体組成を二次イオン質量分析計で測 定したところ-2.3 ‰から-4.6 ‰の範囲で分布し、特に CaSiO₃ ペロブスカイトが取り込まれていた部分 の炭素同位体組成は-2.3 ‰で、典型的な上部マントル起源のダイヤモンドがもつ炭素同位体組成(約 -5.5 ‰)と比べて有意に高かった(炭素の安定同位体には¹²C と¹³C があり、炭素同位体比は標準物 質の炭素同位体比からの相対値 δ^{13} C (‰) = [(¹³C/¹²C)] 試料 /(¹³C/¹²C) 標準 - 1] x 1000 で表される。 生物起源の有機物は軽い同位体である¹²C に富むため-25‰前後であるのに対し、炭酸塩の炭素同位 体組成は約 0 ‰となる。)。このことは海洋地殻と炭酸塩起源の炭素が地表から下部マントルの深さまで 沈み込んでいることを示唆している^[12,13]。CaSiO₃ ペロブスカイトはケイ酸塩の結晶構造に入りにくい不 適合元素である K, U, Th を高濃度で結晶構造中に取り込むことができる性質をもつ。K は放射性同位体 である⁴⁰K をもち、U, Th は放射性元素であるため、これらの元素は放射壊変の際に熱を発し、地球深 部での熱源となる。地球内部の熱収支を議論する上でも重要な発見と言える。

マントル中の水(水素)に関連した重要な発見もダイヤモンドの包有物の研究から報告された。 2014年にリングウッダイト(ringwoodite,かんらん石の高圧相で深さ500kmから660kmのマントル遷移層の領域で安定)の含水相がダイヤモンド中の包有物として見つかった^[14]。マントル遷移層の 主要構成鉱物であるリングウッダイトには、高温高圧実験から最大で2wt.%程度の水が取り込まれるこ とが既にわかっていた^[15]が、実際に地球内部にこれだけの濃度の水が存在するかどうかは全くわかって いなかった。天然ダイヤモンド中から見つかった含水リングウッダイトは、高温高圧実験と同様の濃度レ ベル(1wt.%)の水を含んでおり、このダイヤモンドが成長したマントル遷移層での水の存在を示す直接 的な物証となる。今後、このような含水リングウッダイトの包有物がさらに発見されて、水素同位体組成 が測定されれば、地球の進化過程で水がどのように地球深部に取り込まれたかが明らかになるだろう。

ところで、ダイヤモンド中の包有物として窒素が最近、注目されている。窒素はダイヤモンドの結晶構 造に取り込まれる最も主要な不純物であることは言うまでもない。ダイヤモンドの赤外吸収スペクトルか ら決定される窒素の欠陥構造は天然ダイヤモンドが受けた熱履歴を知るうえで重要な情報をもたらす。窒 素は大気の主要成分であるが、地球全体で考えると窒素の量は不足しており地球深部に現在でも取り残 されている可能性がある。ダイヤモンド中に包有物として窒素あるいは窒素を主成分とする物質が発見さ れれば、地球深部に窒素のリザーバー(貯蔵庫)が存在する有力な証拠となりうる。Kaminsky と Wirth は透過電子顕微鏡(TEM)観察から下部マントル由来の超深部起源ダイヤモンドから鉄窒化物 (Fe₂N, Fe₃N) と鉄炭化窒化物 (Fe₉(N_{0.8}C_{0.2})) の包有物を発見した^[16]。これらの包有物はマントル最下 部で液体の鉄と反応して生成したと考えられ、窒素がマントル最下部から核の領域に存在しうることを示 唆している。また、TEM 観察と赤外吸収スペクトルの観察から、乳白状のナノインクルージョンとしてア ンモニアがダイヤモンドに取り込まれているという報告もある「口」。窒素は酸化状態に応じて窒素酸化物、 N₂、アンモニアといった分子形態を取り、アンモニアの存在はマントルの還元的条件での窒素の化学状 態を反映していると考えられる。超深部起源ダイヤモンドからはマイクロインクルージョン(平均 150 nm)とナノインクルージョン(20–30 nm)の存在が透過電子顕微鏡の観察から報告されている^[18]。 Navon らはこのような微小な包有物が固体結晶状の窒素 (δ-N₂) でできていて、その残留圧力が約 11 GPa に及んでいることなどを報告している^[19]。窒素の微小な包有物は、ダイヤモンド格子に不純物とし て含まれていた窒素原子が、地球深部の条件で離溶して生成したと解釈されている。

ごく最近になって、ホウ素を含む青色の type IIb ダイヤモンドが下部マントルに起源をもつという論文 が発表された^[20]。ホウ素は周期表上では窒素と同様に炭素に隣接する元素で、ダイヤモンド結晶中に

-6-

は窒素と同様に容易に取り込まれる。しかし、ホウ素は地殻に濃集している元素で、マントルにおける ホウ素濃度はきわめて低いと考えられていた。今回の発見はマントル深部(下部マントル)にもホウ素 が豊富に存在することを示唆しており、これまでの地球化学的な常識を大きく覆した研究結果と言える。 この論文では海洋堆積物が地球深部に沈み込んでリサイクルされる際にホウ素が一緒に地球深部まで潜 り込んだと解釈している。一方で、地表からマントル遷移層・下部マントルまでどのような化学形態でホ ウ素が移動していったのか、特定のマントル構成鉱物にホウ素が安定に取り込まれることがあるのか、と 言った研究課題に今後は取り組んでいく必要性を感じた。今後もダイヤモンドの研究が起爆剤となって、 高温高圧実験とも連携しながら新たな地球内部の理解が進んで行くであろう。◆

【参考文献】

[1] J. D. Bass and J. B. Parise (2008) Deep earth and recent development in mineral physics. Elements, 4, 157–163.

[2] T. Hattori, A. Sano–Furukawa, H. Arima, K. Komatsu, A. Yamada, Y. Inamura, T. Nakatani, Y. Seto, T. Nagai, W. Utsumi, T. Iitaka, H. Kagi, Y. Katayama, T. Inoue, T. Otomo, K. Suzuya, T. Kamiyama, M. Arai, T. Yagi (2015) Design and performance of high–pressure PLANET beamline at pulsed neutron source at J–PARC. Nuclear Instruments and Methods in Physics Research A, 780, 55.

[3] O. Navon (1991) High internal pressures in diamond fluid inclusions determined by infrared absorption. Nature, 353, 746.

[4] M. Schrauder, O. Navon (1993) Solid carbon dioxide in a natural diamond. Nature, 365, 42.

[5] H. Kagi, R. Lu, P. Davidson, A. F. Goncharov, H.–k. Mao, R. J. Hemley (2000) Evidence for ice VI as an inclusion in cuboid diamonds from high P–T near infrared spectroscopy. Mineralogical Magazine, 64, 1057.

[6] O. Tschauner, S. Huang, E. Greenberg, V. B. Prakapenka, C. Ma, G. R. Rossman, A. H. Shen, D. Zhang, M. Newville, A. Lanzirotti, K. Tait (2018) Ice–VII inclusions in diamonds: Evidence for aqueous fluid in Earth's deep mantle. Science 359, 1136.

[7] B.H. Scott Smith, R.V. Danchin, J.W. Harris, K.J. Stracke (1984) Kimberlites near Orroroo, South Australia. In: Kornprobst, J. (Ed.), Kimberlites I: Kimberlites and related rocks. Elsevier, Amsterdam, pp. 121–142.

[8] B. Harte, J.W. Harris, M.T. Hutchison, G.R. Watt, M.C. Wilding (1999) Lower mantle mineral associations in diamonds from Sao Luiz, Brazil. In: Fei, Y., Bertka, C.M., Mysen, B.O. (Eds.), Mantle Petrology: Field Observations and High Pressure Experimentation: A Tribute to Francis R. (Joe) Boyd: Geochemical Society Special Publication No. 6, pp. 125–153.

[9] B. Harte (2010) Diamond formation in the deep mantle: the record of mineral inclusions and their distribution in relation to mantle dehydration zones. Mineralogical Magazine, 74, 189.

[10] F. Kaminsky (2012) Mineralogy of the lower mantle: A review of 'super-deep' mineral inclusions in diamond. Earth–Science Reviews, 110, 127.

[11] F. Nestola, N. Korolev, M. Kopylova, N. Rotiroti, D. G. Pearson, M. G. Pamato, M. Alvaro, L. Peruzzo, J. J. Gurney, A. E. Moore, J. Davidson (2018) CaSiO₃ perovskite in diamond indicates the recycling of oceanic crust into the lower mantle. Nature 555, 237.

[12] M. J. Walter, S.C. Kohn, D. Araujo, G. P. Bulanova, C. B. Smith, E. Gaillou, J. Wang, A. Steele, S. B. Shirey (2011) Deep mantle cycling of oceanic crust: Evidence from diamonds and their mineral inclusions. Science, 334, 54.

[13] D.A. Zedgenizov, H. Kagi, V.S. Shatsky, A.L. Ragozin (2014) Local variations of carbon isotope composition in diamonds from São–Luis (Brazil): Evidence for heterogenous carbon reservoir in sublithospheric mantle. Chemical

Geology, 363, 114.

[14] D. G. Pearson, F. E. Brenker, F. Nestola, J. McNeill, L. Nasdala, M. T. Hutchison, S. Matveev, K. Mather, G. Silversmit, S. Schmitz, B. Vekemans, L. Vincze (2014) Hydrous mantle transition zone indicated by ringwoodite included within diamond. Nature 507, 221.

[15] D. L. Kohlstedt, H. Keppler, D. C. Rubie (1996) Solubility of water in the a,b and g phases of $(Mg,Fe)_2SiO_4$. Contributions to Mineralogy and Petrology, 123, 345.

[16] F. Kaminsky, R. Wirth (2017) Nitrides and carbonitrides from the lowermost mantle and their importance in the search for Earth's "lost" nitrogen. American Mineralogist, 102, 1667.

[17] J. Rudloff–Grund, F.E. Brenker, K. Marquardt, D. Howell, A. Schreiber, S.Y. O'Reilly, W.L. Griffin, F.V. Kaminsky (2016) Nitrogen nanoinclusions in milky diamonds from Juina area, Mato Grosso State, Brazil. Lithos, 365, 57.

[18] H. Kagi, D. A. Zedgenizov, H. Ohfuji, H. Ishibashi (2016) Micro– and nano–inclusions in a superdeep diamond from Sao Luiz, Brazil. Geochemistry International, 54, 834.

[19] O. Navon, R. Wirth, C. Schmidt, B. M. Jablon, A. Schreiber, S. Emmanuel (2017) Solid molecular nitrogen (δ –N₂) inclusions in Juina diamonds: Exsolution at the base of the transition zone. Earth and Planetary Science Letters, 464, 237.

[20] E. M. Smith, S. B. Shirey, S. H. Richardson, F. Nestola, E. S. Bullock, J. Wang, W. Wang (2018) Blue boron-bearing diamonds from Earth's lower mantle. Nature, 560, 84–87.

[21] H. Kagi, S. Odake, S. Fukura, and D. Zedgenizov D. (2009) Raman spectroscopic estimation of depth of diamond origin: technical developments and the application. Russian Geology and Geophysics, 50, 1183–1187

[22] N.J. Cayzer, S. Odake, B. Harte and H. Kagi (2008) Plastic deformation of lower mantle diamonds by inclusion phase transformations. European Journal of Mineralogy, 20, 333–339

【著者紹介】

鍵 裕之
1965年生まれ
1988年東京大学理学部化学科卒業
1991年東京大学大学院理学系研究科博士課程中退
1991年筑波大学物質工学系助手
1996年ニューヨーク州立大学研究員
1998年東京大学大学院理学系研究科講師
2010年同教授 現在に至る。

■研究内容:地球化学、地球深部物質科学、高圧下での化学反応・物質の構造変化

ダイヤモンドのインクルージョン・ギャラリー

リサーチ室

ダイヤモンドはきわめて高い物理的・化学的安定性を有しているため、インクルージョンにとっては非 常に優れた保護容器(カプセル)となります。したがって、ダイヤモンド中のインクルージョンは地球深 部の情報を直接提供してくれる優れた研究試料となります。

ダイヤモンド中のインクルージョンは鉱物の種類や化学組成からPタイプとEタイプに大別されていま す。Pタイプはオリビン、エンスタタイト、ダイオプサイド、パイロープなどを含み、Eタイプはパイロー プ / アルマンディン、オンファサイト、ルチル、カイヤナイト、クロマイトなどを含みます。このような P タイプとEタイプの相違は母結晶のダイヤモンドの生成起源に関連しており、インクルージョンの詳細な 研究により、それぞれの成因が議論されています。いずれにしても、これまでの研究ではダイヤモンドの ほとんどは地下 150-200 k mで生成したと考えられてきました。ところが、本誌掲載の鍵裕之教授の解 説にあるように、最近では地下 410-660 km よりも深い起源をもつ超深部起源のダイヤモンドの存在が 明らかとなっています。

超深部起源のダイヤモンドには宝石ダイヤモンドとして良く知られている Cullinan などの大粒のⅡ型 ダイヤモンドやホープなどで知られるⅡ b 型のブルーダイヤモンドも含まれます。

このように宝石ダイヤモンドでは"キズ"としてクラリティを下げる要因となるインクルージョンですが、 地球科学の発展に寄与する重要な研究対象でもあります。

【Pタイプのインクルージョン】

Pタイプは Peridotite (ペリドタイト) 起源の鉱物インクルージョンを含みます。無色透明結晶はオリ ビンかエンスタタイトです。両者を視覚的に区別するのは困難ですが、顕微ラマン分光分析にて明確に 識別することができます。鮮やかな緑色結晶はクロムダイオプサイドです。紫赤色の結晶はパイロープガー ネットです。緑色と赤色の色彩のコントラストが綺麗です。

【Eタイプのインクルージョン】

Eタイプは Eclogite(エクロジャイト)起源の鉱物インクルージョンを含みます。橙色の結晶はアルマ ンディン/パイロープガーネットです。灰緑色の結晶はオンファサイトです。橙色と灰緑色の結晶の組み 合わせは E タイプ起源の典型で、色彩のコントラストが鮮やかです。しばしば赤色の結晶が見られますが、 これはガーネットではなくルチルの結晶です。頻度は低いのですが、青色の鮮やかな結晶が見られるこ とがあります。これはカイヤナイトで、E タイプの特徴となります。黒色の結晶は様々ありますが、クロマ イトは E タイプに多く見られます。

【その他のインクルージョン】

いっぽう、インクルージョンには黒雲母、白雲母などのPタイプにもEタイプにも属さない鉱物も有り ます。これらのインクルージョンもダイヤモンドの形成時に取り込まれたものと考えられており、キンバー ライトのマグマ起源の可能性も指摘されています。また、何らかの結晶インクルージョンを取り囲むよう に黒色の円盤状のインクルージョンが見られることがあります。これらは宝石学では"カーボンブラック" と呼ばれることもあり、たいていは二次的に生成したグラファイトインクルージョンです。◆

【Pタイプのインクルージョン】

写真1:オリビン インクルージョン

写真2: クロムダイオプサイド インクルージョン

写真3: クロムダイオプサイド インクルージョン

写真4: クロムダイオプサイド インクルージョン

【Pタイプのインクルージョン】

写真5: クロムパイロープガーネット インクルージョン (自然光下)

写真6:クロムパイロープガーネットインクルージョン (白熱灯下)

写真7:パイロープガーネット インクルージョン

写真8:パイロープガーネット インクルージョン

【Pタイプのインクルージョン】

写真9:パイロープガーネット インクルージョン

写真 10:パイロープガーネット インクルージョン

写真 11:パイロープガーネット インクルージョン

写真 12:パイロープガーネット インクルージョン

【Eタイプのインクルージョン】

写真 13:パイロープ/アルマンディンガーネット インクルージョン(赤橙色)とオンファサ イト インクルージョン(灰緑色)

写真 14:パイロープ/アルマンディンガーネット インクルージョン (橙色)とオンファサイト インクルージョン(灰色)

写真 15:オンファサイト(灰緑色)とパイロープ/ アルマンディンガーネット(赤橙色)インクルージョン

写真 16:パイロープ/アルマンディンガーネット インクルージョン

写真 17:パイロープ/アルマンディンガーネット インクルージョン

写真 18:ルチル インクルージョン

【Eタイプのインクルージョン】

写真 19:カイヤナイト インクルージョン

写真 20: クロマイト インクルージョン

【その他のインクルージョン】

写真 21:結晶インクルージョン(未知)と黒色インクルー 写真 22:黒色インクルージョン(おそらくグラファイト) ジョン(おそらくグラファイト)

無色~ほぼ無色の HPHT 合成ダイヤモンドへの 電子線照射処理実験報告

リサーチ室 北脇裕士、江森健太郎

無色~ほぼ無色のメレサイズのHPHT合成ダイヤモンドに電子線を照射する実験を行った。その結果、 照射の強度に応じて蛍光および燐光が共に弱くなり、最終的には燐光がほぼなくなった。この際、照射 強度を強くすると地色が淡青色に変化したが、見かけ上無色のままの照射強度において完全に燐光が消 えたものは一部だけであった。

2015 年頃から世界的な宝石市場において大量のメレサイズの HPHT 合成ダイヤモンドが流通を始め ており、業界関係者はその対応に追われている。紫外線透過性、紫外線発光、赤外分光などを応用し た各種の判別器機が開発されているが、装置の原理が未公表のブラックボックス的なものも販売されて いる。これらの中で紫外線下での燐光を検出する装置はルースでもジュエリーにセットされた状態でも短 時間で検査できるという利便性があり、国内の輸入業者を中心に幅広く利用されている。

2018 年 4 月、香港の器機開発業者から「HPHT-grown diamonds might escape detection as synthetics, once they are treated with irradiation」というアラートが配信された(Diamond Services, 2018)。HPHT 合成ダイヤモンドは紫外線照射後、ミリ秒〜数十秒の燐光があり、燐光を示さない天然と区別する事ができる。しかし、一旦照射処理が施されると室温で燐光を測定する装置では識別ができなくなるというものである。このアラートに呼応して IIDGR や GIA は自社製の判別装置における信頼性に問題はないと報告している(Rapaport News, 2018)。

さて、このような背景のもと、電子線照射により無色~ほぼ無色の HPHT 合成ダイヤモンドの燐光が 減衰するのかの実験を行った。実験に用いた試料は 0.008-0.032ct の見かけ上無色の中国製 HPHT 合成ダイヤモンドで、それぞれ 5 個ずつ AとBの 2 つのグループに分けて段階的に照射を行った。 電子線はコッククロフトウォルトン型の放射線発生装置を用いて、

試料Aグループには総線量:1.0×10¹⁵e⁻/cm²、10.0×10¹⁵e⁻/cm²、50.0×10¹⁵e⁻/cm²、

Bグループには総線量:5.0×10¹⁵e⁻/cm²、25.0×10¹⁵e⁻/cm²、100.0×10¹⁵e⁻/cm² をそれぞれ照 射した。

これらを国内での利用率の高い中国製の判別装置を用いて照射前後の蛍光と燐光の写真を撮影した。 その結果を図-1と図-2に示す。試料Aグループにおいて総線量:1.0×10¹⁵e^{-/}cm²では燐光に減衰 は見られないが、10.0×10¹⁵e^{-/}cm²では若干の燐光の減衰が見られた。50.0×10¹⁵e^{-/}cm²では明ら かな減衰が見られ、②の試料では完全に消滅した。試料Bグループにおいては総線量: $5.0×10^{15}e^{-/}cm^{2}$ で燐光に若干の減衰が見られ、25.0×10¹⁵e^{-/}cm²では明らかな減衰が見られ、①の 試料では完全に消滅した。100.0×10¹⁵e^{-/}cm²では未処理で燐光の非常に強かった試料②を除いて他 の4個はすべて燐光が消失した。図-3は試料Aグループの50.0×10¹⁵e^{-/}cm²照射後の試料と燐光の 写真である。試料①③⑤は白色のグレーダーの上に乗せてルーペで観察するとわずかに青色味を感じる。 これは電子線照射により、GR1センタが形成したためである。しかし、この程度の淡い色調はジュエリー にセットされてしまえばほぼ無色に見えると思われる。図-4は試料Bグループの100.0×10¹⁵e^{-/}cm² 照射後の試料と燐光の写真である.グレーダーに乗せてルーペで観察すると、②の試料はほぼ無色のま まであったが、他の4個は明らかなGR1センタに因る青色味が感じられた。このように照射する電子線 の強度が強いとGR1センタに因り青色に着色する。青色に着色する程度の強度で照射されたものはほ ば燐光がなくなったが(5個中4個)、ほぼ無色のまま変化のない強度では燐光が完全に消滅したのは ー部(5個中1個)であった。 以上のようにメレサイズの HPHT 合成ダイヤモンドに電子線を照射することで燐光を減衰あるいは消滅できることがわかった。しかし、ダイヤモンドを無色のままで燐光を完全に消滅させるのは困難である。 したがって、燐光の画像を目視して観察者自身が判別する装置の信頼性は今後もある程度担保されるが、 その解釈には慎重な対応が必要となろう。◆

【参考文献】

Eaton-Magaña S., Shigley J.E. and Breeding C.M., 2017. Observations on HPHT-grown synthetic diamonds: A review. Gems & gemology, 53(3), 262-284

Diamond Services, 2018. HPHT-grown diamonds might escape detection as synthetics, once they are treated with irradiation, Lab Alert 2018

Rapaport News, 2018. Labs Refute Claims HPHT Escaping Detection, Apr 25, 2018

宝石の輸入統計 (2018年1月~6月)

ダイヤモンド

※宝石の輸入統計のデータは財務省貿易統計 (http://www.customs.go.jp/toukei/srch/index.htm) の発表をもとに加工したものです。

輸	入	6月数量 (Ct)	6月金額 (千円)	1月~06月累計数量 (Ct)	1月~06月累計金額 (千円)
中	玉	80	10,646	2,256	119,246
香	港	18,740	1,182,224	90,149	5,149,191
タ	イ	1,670	271,122	12,477	1,870,231
イン	ノド	87,165	4,805,864	582,671	23,305,898
イスラ	ラエル	1,832	394,113	27,033	5,279,652
オラ	ンダ	205	52,524	965	214,194
ベル	ギー	18,466	4,969,852	59,883	10,027,321
	シア	91	14,254	4,498	103,376
アメ	リカ	4,479	284,023	14,565	787,956
その	D 他	1,014	265,797	14,371	1,865,066
合	計	133,742	12,250,419	808,868	48,722,131

ルビー・サファイア・エメラルド

輸入	6月数量 (Ct)	6月金額 (千円)	1月~06月累計数量 (Ct)	1月~06月累計金額 (千円)
中 国	31,888	17,750	786,121	25,519
香港	10,229	172,218	61,929	1,019,587
タイ	12,534	118,194	147,158	1,190,851
ミャンマー	375	117,200	630	173,813
インド	36,646	40,884	322,317	163,113
スリランカ	1,139	70,475	7,498	281,502
ドイツ	0	0	160	12,459
アメリカ	1,954	59,980	4,680	119,456
コロンビア	41,118	233,722	98,473	963,374
ブラジル	1,869	10,178	2,845	44,255
その他	1,831	360,875	10,023	466,726
合 計	139,583	1,201,476	1,441,834	4,460,655

ダイヤモンド [1月~06月累計]

[1月~06月累計] ルビー・サファイア・エメラルド

ダイヤモンドの月別輸入量

	重量	:カラット		金額	頁:単位千円
	2017 年	2018年		2017 年	2018年
1月	145,651	182,631	1月	9,115,479	8,624,641
2月	89,202	88,798	2月	7,038,546	5,323,365
3月	126,545	158,266	3月	8,892,147	9,188,258
4月	99,783	108,714	4月	7,607,836	6,295,454
5月	97,271	136,717	5月	5,039,051	7,039,994
6月	136,962	133,742	6月	7,991,933	12,250,419
7月	146,171		7月	6,301,877	
8月	104,617		8月	5,081,365	
9月	132,202		9月	8,531,812	
10月	135,286		10月	6,728,867	
11月	92,491		11月	5,219,667	
12月	128,648		12月	7,936,709	

ルビー・サファイア・エメラルドの月別輸入金額

	重量	:カラット		金額	頁:単位千円
	2017年	2018年		2017 年	2018年
1月	153,551	698,973	1月	428,170	543,674
2月	101,684	43,105	2月	1,478,334	526,517
3月	280,892	364,348	3月	1,582,610	1,226,841
4月	64,868	64,357	4月	284,193	388,208
5月	89,148	131,468	5月	1,023,477	573,939
6月	202,006	139,583	6月	1,723,399	1,201,476
7月	512,462		7月	406,476	
8月	30,079		8月	274,818	
9月	240,471		9月	872,694	
10月	235,050		10月	507,820	
11月	93,847		11月	302,192	
12月	233,760		12月	621,703	

中央宝石研究所の各種セミナー

各種セミナースケジュール	10 月	11月	12 月
ベーシックコース (東京)	$4 \sim 5$	8~9	$6 \sim 7$
ベーシックコース (大阪)	$1 8 \sim 1 9$		$1 \ 3 \sim 1 \ 4$
ダイヤモンドコース(東京)	$25 \sim 26$	2 1~2 2	2 0~2 1
ダイヤモンドコース(大阪)		$1\ 5\sim 1\ 6$	
博多 ダイヤモンドコース			
宝石鑑別コース (東京)	1 1~1 2		
パールグレーディングコース(東京)	16	2 6	1 1

※上記日程は都合により変更となることがありますので、あらかじめお問合わせの上お申し込みください。

受講料(税込)

ベーシックコース	(2日間)	¥25,	000+消費税
ダイヤモンドコース	(2日間)	¥25,	000+消費税
パールグレーディングコース	(1日)	¥12,	000+消費税
宝石鑑別コース	(2日間)	¥30,	000+消費税

※一度ご入金いただきました受講料のご返金は致しかねます。予め御了承下さい。

セミナー時間

【東京】10:00~17:00 【大阪】10:30~17:00 (会場都合による) 【博多】10:00~16:30 (会場都合による・開催最低人数5名)

教育部:〒110-0005 東京都台東区上野 5-15-15 中田ビル 5 階 TEL 03-3837-0855 / FAX 03-3839-1455

◎ 掲載記事・写真・イラスト等の無断転写を禁じます。

-20-

好評ご予約受付中!!

11-12月 ボルダーオパール イエローサファイア

【ご注文・問い合わせ先】

7-8月 パライバトルマリン

(小中央宝石研究所 器材部: TEL 03 (3839) 1451 (代) FAX 03 (3839) 1455

納期 お申込締切 発送予定 1回目 09月20日 10月下旬 2回目 10月19日 11月下旬

*送料 1梱包(50部入)につき¥1,000(税別)。 * 貴社名は一番下に入ります。印刷は黒1色です。 * 販売部数に限りがあります。その場合は申し込み先着順 とさせていただきます。第1回目締切りにて売り切れの 場合もございますのでお早めにお申し込みください。

* 店名刷込み代初版のみ¥3,000(税別)。改版代は実費。

- 1,000 部以上 ¥450 * 名入れは 50 部から承ります。
- 50 部以上 ¥640 200 部以上 ¥ 550 500 部以上 ¥500
- 100 部以上 ¥600
- **1部 ¥1000**(送料がかかります。)

〔名入れの場合〕

2019年度 ジュエリーカレンダー

《自然の輝き》

3-4月 パール

貴店名刷込スペース

1-2月 ダイヤモンド

┏━ 綴じ部は環境に配慮した紙製です。

