CGL通信 vol48 「天然レッドスピネルの加熱実験報告」

CGL通信


CGL通信 vol48 「天然レッドスピネルの加熱実験報告」

Adobe_PDF_file_icon_32x32-2019年1月PDFNo.48

リサーチ室 江森 健太郎、北脇 裕士、岡野 誠
ジェムリサーチジャパン 福田 千紘

近年、レッド~ピンクの天然スピネルが人気を博している。同系色のコランダムのほとんどは色の改善のための加熱が施されているのに対し、スピネルは非加熱であることもその要因のひとつと思われる。しかし、これらの赤色系スピネルは一部で加熱が行われているとの懸念があり、その識別に関心がもたれている。また、これらの中にはフラックス合成スピネルがまぎれていることもあり、鑑別をより困難なものにしている。
本稿では天然レッドスピネルを600℃~1000℃まで100℃刻みで加熱処理を行い、温度の違いによるフォトルミネッセンススペクトルの変化を記録した。その結果、800℃以上で発光ピークの位置と半値幅(FWHM)が明確に変化し、加熱処理の痕跡を捉えることが可能であることが確認できた。しかし、加熱後の天然レッドスピネルの発光ピークは、フラックス合成のレッドスピネルのものと酷似するため、レッドスピネルの起源および加熱処理の検出は他の分析も組み合わせた総合的な判断が必要である。

 

背景

スピネルの語源はラテン語のspina(小さな棘)に因んでいる。和名は尖晶石といい、どちらも尖った結晶の形に由来している。一般的なスピネルの結晶形は棘のような針状ではなく、尖端の尖った八面体である。結晶が摩耗されず美しい形のものは“エンゼル・カット”と呼ばれ、原石のまま宝飾品に利用されることがある。
広義のスピネルの化学組成はX2+Y3+2O4で表される。Xには2価の元素であるMg、Mn、Fe2+、Zn、Co、Cuなどが入り、Yには3価の元素であるAl、Fe3+、Crなどが入る複雑な固溶体である。狭義のスピネルはMgAl2O4で宝石用スピネルのほとんどがこれに属する。
宝石用のスピネルには各色の変種が存在するが、概して青色系または赤色系に大別できる。これはMgの一部をFe2+が置換することにより青色系が、Alの一部をCrが置換することで赤色系となるためである。
スピネルは、18世紀頃まではしばしばコランダムと混同されてきた。レッドスピネルはルビーに、ブルースピネルはブルーサファイアに外観も宝石学的な特性値も近似しており、何よりも同一の産地から共生することも混同される大きな要因であった。歴史的に英国王室の正王冠に嵌め込まれていた黒太子のルビーがスピネルであったことは有名である。
さて、近年、市場に流通するレッドスピネルやピンクスピネルの数が増加している。ルビー、サファイアのほとんどが色の改善のために加熱されているのに対して、スピネルは非加熱であることも、ナチュラル嗜好を刺激するひとつの人気の要因らしい。しかし、一部のレッドスピネルは加熱処理が施されているとの懸念があり(文献1)、その識別に関心がもたれている。(文献2)(文献3)によると、加熱処理の前後でフォトルミネッセンススペクトルが変化することが報告されており、加熱の検出に有効とされている。
本研究では、先行研究の結果を確認するため、レッドスピネルの加熱処理を行い、その処理前後のフォトルミネッセンススペクトルを記録した。

 

試料と分析方法

試料はミャンマー産の天然非加熱レッドスピネル原石試料5個(①2.702 ct、②2.575 ct、③3.336 ct、④4.480 ct、⑤5.266 ct)を用いた(図1)。

 

図1:本研究で用いたミャンマー産天然レッドスピネル (下段左より試料①、②、③、上段左より④、⑤)なお、写真は1000℃で加熱後のものである。
図1:本研究で用いたミャンマー産天然レッドスピネル
(下段左より試料①、②、③、上段左より④、⑤)なお、写真は1000℃で加熱後のものである。

 

試料の加熱処理はジェムリサーチジャパンにおいてADVANTEC FUM312DAマッフル炉を用いて行った(図2)。試料は内径30 mm、容量10 mlのムライト製磁性るつぼ内にアルミナ粉末を充填し、その中に埋設した。磁性るつぼは底面炉材保護のため、さらにジルコニウムるつぼに入れて炉内に配置した(図3)。

 

図2:加熱に用いたマッフル炉 (ADVANTEC社製FUM312DA)
図2:加熱に用いたマッフル炉 (ADVANTEC社製FUM312DA)

 

図3:加熱に用いたるつぼ。上部がジルコニウムるつぼ とその蓋、下部がムライト製磁性るつぼ
図3:加熱に用いたるつぼ。上部がジルコニウムるつぼ
とその蓋、下部がムライト製磁性るつぼ

 

加熱ピーク温度は、600℃~1000℃まで100℃刻みとし、同一試料を用いて低温から順に計5回熱履歴を与えた。温度調節はPID制御とし、室温からピーク温度までの昇温時間を2時間、ピーク温度の保持時間を2時間、ピーク温度から室温までの降温時間を4時間の3pathと設定し、炉内は酸化雰囲気(周囲雰囲気)で加熱した。設定温度と実測温度には必ず差異が生じるが、PID制御は単位時間当たりの温度変化の微分値をフィードバックすることで温度の変動を抑制し、かつ設定温度と実測温度の差を時間軸で積分した面積が最小になるように誤差を制御する方法で他の制御方法に比べると差異や変動を少なくすることができる。降温時間は実際には4時間では室温まで降下しないため室温に戻るまで十分な時間をおいてから試料を取り出した。室温は水銀温度計で実験ごとに校正しピーク温度は工場出荷時の校正設定とした。
宝石学的検査および分析はすべてCGLのリサーチ室にて行った。フォトルミネッセンス分光分析にはRenishaw社製 inVia Raman MicroscopeとRenishaw社製Raman system–model 1000を用い、488 nmのレーザーを励起源として50倍の対物レンズを使用し、室温条件(約20℃)で測定を行った。

 

結果と考察

◆フォトルミネッセンス分光分析
すべての天然レッドスピネル試料について、加熱前、600℃~1000℃それぞれの加熱後において、フォトルミネッセンス分光分析を行った。図4に試料①のそれぞれの実験条件下でのフォトルミネッセンススペクトルを重ね描きしたものを示す。なお、試料②~⑤の分析においてもすべて試料①と同様の結果が得られた。

 

図4:試料①の非加熱状態、600℃~1000℃に加熱後のフォトルミネッセンススペクトルの変化
図4:試料①の非加熱状態、600℃~1000℃に加熱後のフォトルミネッセンススペクトルの変化

 

685.6 nmにおけるピークは通常R–lineと呼ばれ、レッドスピネルの八面体サイトに入るCr3+の周囲にあるMgとAlが規則正しく配置(秩序状態)されていることにより発光するゼロフォノン線である(八面体サイトにAl、四面体サイトにMg)。一方、687.4 nmにおけるピークはL–lineと呼ばれ、スピネルの八面体サイトに入るCr3+の周囲にあるMgとAlがランダムに配置(無秩序状態)されていることにより発光するゼロフォノン線である(図5)。また、690 nm〜730 nmのピークはフォノンサイドバンドと呼ばれるピークである(文献3文献4)。

 

図5:Crを有する八面体サイト周辺の(1)Mg、Alが規則正しく並んだ状態(秩序状態)と(2)Mg、Alがランダムに並んだ状態(無秩序状態)。秩序状態では四面体サイトにMg、八面体サイトにAlが入るが、無秩序状態では四面体、八面体関係なくMgとAlが入る。
図5:Crを有する八面体サイト周辺の(1)Mg、Alが規則正しく並んだ状態(秩序状態)と(2)Mg、Alがランダムに並んだ状態(無秩序状態)。秩序状態では四面体サイトにMg、八面体サイトにAlが入るが、無秩序状態では四面体、八面体関係なくMgとAlが入る。

 

非加熱の状態ではR–lineの強度はL–lineの強度よりも高いが、その強度比R–line / L–lineの値は800℃加熱において劇的に変化し(図6)、900℃以上の加熱においてL–lineの強度がR–lineの強度を上回ることがわかった。また、それぞれの試料について、R–lineの非加熱、各加熱条件後での半値幅を求めた(図7)。R–lineの半値幅は、800℃で大きく変化することが判明した。なお、900℃以上の加熱条件ではピークが重なり、分離が難しいため半値幅、強度比の計算を行うことはできなかった。

 

図6: 試料①~⑤の非加熱状態、600〜800℃の加熱実験後のR–line (685.6 nm)/ L–line (687.4 nm)フォトルミネッセンスピーク強度比の変化
図6: 試料①~⑤の非加熱状態、600〜800℃の加熱実験後のR–line (685.6 nm)/ L–line (687.4 nm)フォトルミネッセンスピーク強度比の変化

 

以上の結果をまとめると、(1)800℃の加熱においてR–line(685.6 nm)の半値幅が増加すると同時に、R–line/L–lineの強度比に変化が現れ、(2)900℃以上の加熱でL–line強度はR–line強度を上回ることがわかった。このことは天然でのCr3+周囲のMg、Alの秩序/無秩序状態についての平衡状態が800℃以上に加熱することにより相転移が起こり、Cr3+周囲のMg、Alの無秩序化がより進んだ結果であると言える。
この相転移温度は650〜700℃であると言われているが(文献5文献6文献7)、本研究では800℃の加熱において見られた。このことは、サンプルを各加熱条件で加熱後一度室温に戻し、再度加熱するという行程を経ていることによる影響か、加熱を行う際の最高温度保持時間の違い、である可能性がある。
加熱処理によりMg、Alの無秩序化が進んだレッドスピネルのフォトルミネッセンススペクトルは、700℃および650℃で長時間(数日)におよぶ加熱を行っても可逆的に元の状態には戻らないことが確認されている(文献3)。したがって、フォトルミネッセンス分光分析によるスペクトル解析を行うことで800℃以上に加熱処理が施されたかどうかの履歴を検証することが可能である。
レッドスピネルの加熱処理については文献1により、2005年頃から商取引において懸念されていたと報告されている。筆者の1人(KH)も日常の鑑別業務において2006年には加熱されたと思われるレッドスピネルを確認している。文献1によると、タンザニア産スピネルの光を散乱させて石の概観を白っぽくさせるクラウド状の微小包有物は950–1150℃で軽減され、1200℃で完全に除去できるとしている。また、文献8によると、ベトナム産レッドスピネルのオレンジ色の色味は850℃以上で除去できるとしている。したがって、商業的にレッドスピネルの外観を向上させるためには少なくとも850℃以上の温度が必要と思われる。
本研究の対比実験として、フラックス法で合成されたレッドスピネルのフォトルミネッセンス分光分析を行った (図8)。フラックス法で合成されたレッドスピネルのフォトルミネッセンススペクトルは、900℃以上で加熱された天然スピネルのスペクトルと酷似していた。これはフラックス合成時の温度は1200℃–900℃以上であり(文献1)、Cr3+周囲のMg、Alが無秩序化しているためと考えられる。
したがって、フォトルミネッセンス分光分析は、天然レッドスピネルが商業的に加熱処理されたものかどうかの識別にはきわめて有効であるが、加熱された天然レッドスピネルとフラックス法合成レッドスピネルは識別できない。フラックス法合成スピネルの識別には蛍光X線分析やFTIR分析など他の手法を併用する必要がある(文献9)。

 

図8:フラックス法合成レッドスピネルと天然加熱スピネル(試料①、900℃加熱後)のフォトルミネッセンススペクトル
図8:フラックス法合成レッドスピネルと天然加熱スピネル(試料①、900℃加熱後)のフォトルミネッセンススペクトル

 

まとめ

天然レッドスピネルに加熱処理を行い、フォトルミネッセンス分光分析での加熱処理の判定の可能性について調査を行った。天然レッドスピネルは、800℃に加熱するとフォトルミネッセンススペクトルで観察されるR–line(685.6 nm)の半値幅が増加し、R–lineとL–line(687.4 nm)の強度比が変化する。また900℃以上に加熱することでL–lineの強度はR–lineの強度に比べ強くなることが確認できた。したがって、フォトルミネッセンス分光分析は、天然レッドスピネルが商業的に加熱処理されたものかどうかの識別にはきわめて有効である。しかし、加熱された天然レッドスピネルとフラックス法合成レッドスピネルはフォトルミネッセンススペクトルでは識別できないため、両者の識別には他の手法を併用した総合的な判断が必要である。◆

 

文献

1.Saeseaw S., Wang W., Scarratt K. Emmett J. L., Douthit T. R.(2009) Distinguish Heat Spinels from Unheated Natural Spinels and from Synthetic Spinels – A short review of on–going research,
http://www.giathai.net/distinguishing–heated–spinels/

2.Sriprasert B., Atichat W., Wathanakul P., Pisutha–Arnond V., Sutthirat C., Leelawattanasuk T., Saejoo S., Jakkawanvibul J., Naruedeesombat N., Puangkaew K., Artsamang P., Sritunayothin P., Kunwisutpan C. (2008) The Heat–Treatment Experiments of Red Spinel from Myanmar. Proceeding of GIT2008, pp 278–282

3.Wang S. and Shen A. (2017) Reversibility of Photoluminescence Spectra of Spinel with heat treatment. 35th IGC 2017 proceedings, pp 67–70

4.Skvortsova V., Mironova–Ulmane N., Riekstina D. (2011) Structure and Phase changes in natural and synthetic magnesium aluminium spinel. Proceedings of the 8th International Scientific and Practical Conference Volume 11, pp. 100–106

5.Peterson, R. C., Lager, G. A., Herterman, R. L. (1991) A time–of–flight neutron powder diffraction study of MgAl2O4 at temperatures up to 1273K. American Mineralogist, 76, pp 1455–1458.

6.Slotznick, S. P. & Shim, S. H. (2008) In situ Raman spectroscopy measurements of MgAl2O4 spinel up to 1400 *C. American Mineralogist, 93, pp 470–476.

7.Redfern, S. A. T., Harrison, R. J., O’Neill, H. S. C., Wood, D. R. R. (1999) Thermodynamics and kinetics of cation ordering in MgAl2O4 spinel up to 1600°C from in situ neutron diffraction. American Mineralogist, 84, 299–310.

8.Malsy A.–K., Karampelas S., Schwarz D., Klemm L., Armbruster T., Tuan D. A. (2012) Orangey–red to orangey–pink gem spinels from a new deposit at Lang Chap (Tan Huong–Truc Lau), Vietnam. The Journal of Gemmology, volume 33, pp. 19–27

9.北脇裕士, 岡野誠 (2006) スピネル最新事情. Gemmology 2006年3月号, pp. 4–5