1.Saeseaw S., Wang W., Scarratt K. Emmett J. L., Douthit T. R.(2009) Distinguish Heat Spinels from Unheated Natural Spinels and from Synthetic Spinels – A short review of on–going research,
http://www.giathai.net/distinguishing–heated–spinels/
2.Sriprasert B., Atichat W., Wathanakul P., Pisutha–Arnond V., Sutthirat C., Leelawattanasuk T., Saejoo S., Jakkawanvibul J., Naruedeesombat N., Puangkaew K., Artsamang P., Sritunayothin P., Kunwisutpan C. (2008) The Heat–Treatment Experiments of Red Spinel from Myanmar. Proceeding of GIT2008, pp 278–282
3.Wang S. and Shen A. (2017) Reversibility of Photoluminescence Spectra of Spinel with heat treatment. 35th IGC 2017 proceedings, pp 67–70
4.Skvortsova V., Mironova–Ulmane N., Riekstina D. (2011) Structure and Phase changes in natural and synthetic magnesium aluminium spinel. Proceedings of the 8th International Scientific and Practical Conference Volume 11, pp. 100–106
5.Peterson, R. C., Lager, G. A., Herterman, R. L. (1991) A time–of–flight neutron powder diffraction study of MgAl2O4 at temperatures up to 1273K. American Mineralogist, 76, pp 1455–1458.
6.Slotznick, S. P. & Shim, S. H. (2008) In situ Raman spectroscopy measurements of MgAl2O4 spinel up to 1400 *C. American Mineralogist, 93, pp 470–476.
7.Redfern, S. A. T., Harrison, R. J., O’Neill, H. S. C., Wood, D. R. R. (1999) Thermodynamics and kinetics of cation ordering in MgAl2O4 spinel up to 1600°C from in situ neutron diffraction. American Mineralogist, 84, 299–310.
8.Malsy A.–K., Karampelas S., Schwarz D., Klemm L., Armbruster T., Tuan D. A. (2012) Orangey–red to orangey–pink gem spinels from a new deposit at Lang Chap (Tan Huong–Truc Lau), Vietnam. The Journal of Gemmology, volume 33, pp. 19–27
9.北脇裕士, 岡野誠 (2006) スピネル最新事情. Gemmology 2006年3月号, pp. 4–5
ヒスイは、低温高圧で変成した地質帯で発見される(Essene, 1967; Chihara, 1971; Harlow and Sorensen, 2005)。日本海溝は、太平洋プレートと日本列島を含むユーラシアプレートの境界で、冷たい太平洋プレートが日本列島の下に沈み込んでいる。この場所はヒスイができる低温高圧の条件に符合する。日本には8か所ほどのヒスイ産地がある(地図1)。日本海側に分布する蓮華帯および三郡帯のヒスイ(糸魚川、大佐、大屋、若桜)のほとんどは純度が高く、90%以上がヒスイ輝石(同類オンファサイトを含む)からできている。その他の地域では、ヒスイ輝石が80~50%を超える岩石は稀であり、ほとんどが曹長石、藍晶石、方沸石などを多く含む(Yokoyama and Sameshima, 1982; Miyazoe et al., 2009; Fukuyama et al., 2013)。
地図1:日本におけるヒスイ輝石の産出地
蓮華–三郡帯 糸魚川地区は蓮華帯に属し、蓮華帯は低温高圧の変成岩、変成堆積岩、角閃岩、ロジン岩など様々な構造岩塊を含む蛇紋岩メランジェである(Nakamizu et al., 1989)。宝石質のヒスイは小滝川流域と青海川の橋立地区でのみ、二畳紀-石炭紀の石灰岩と白亜紀の砂岩・頁岩との断層の境界に置かれた蛇紋岩の巨礫として産するのが見つかっている。ヒスイの巨礫は大きさが1~数メートルで、ほとんどが数百メートルの距離の地域に分布している。小滝地区のヒスイ岩石には、曹長石(石英を伴うまたは伴わない)、白色ヒスイ、緑色ヒスイ、水酸化ナトリウムに富むカルシウム含有角閃石、そして母岩である蛇紋岩が外縁に向かって同心の帯状に放射状になっているのが見られる。青海のヒスイ岩石は「独特の層状構造」を持ち、特に交互に粗と密になったコンパクトな層が見られることもあり、ラベンダーヒスイを含むことがよくある(Chihara, 1991)。
日本産ヒスイについて更なる研究
日本産ヒスイの歴史と地質産状についてこれまでに多くの研究が行われてきた。一部の研究報告では、糸魚川産の緑色ヒスイは鉱物学的にヒスイ輝石とオンファサイトから成り、緑色部はオンファサイトであり、緑色の主な原因はFeであると指摘されきた(Oba et al., 1992, 宮島1996, 2004)。筆者は世界的にヒスイの名産地であるミャンマー、グアテマラ、ロシアからのヒスイの光学的特性や岩石学的構造、および地球化学を学習すると共に、日本産ヒスイの色の種類、鉱物学的内部組織、化学成分の特徴などを宝石学的な観察と分光分析法、そして電子線マイクロプローブ(EPMA)およびレーザーアブレーション誘導結合プラズマ質量分析法(LA–ICP–MS)による定量分析を行ってみた。本稿では糸魚川産(小滝川および青海川)ヒスイに限定して、その宝石学的特徴と化学的性質を記述する。本研究に用いた糸魚川産ヒスイは、小滝川地域のものが32個、青海川地域のものが7個である(図5)。
これらは『フォッサマグナ・ミュージアム』http://www.city.itoigawa.lg.jp/fmm/と、
日本産ヒスイにおける希土類元素(REE)は、緑・白・黒のヒスイよりも、ラベンダー色~青色の試料の方がより富んでいる傾向にある。すべての色において、軽希土類元素(LREE: La, Ce, Nd, Sm)の濃度は重希土類元素(HREE: Eu, Gd, Dy, Y, Er, Yb, and Lu)の濃度より高い傾向にあった。このコンドライト規格化希土類元素パターンから、日本産のラベンダー色~青色のヒスイは高いLREE/HREE比と、他のREEに比べて低いEu濃度を特徴とすることができる。
興味深いことに、すべての色の日本産ヒスイの原始マントル規格化微量元素パターンは、イオン半径の大きい親石元素(LILE)であるSrおよびBa、そして電荷の大きいな元素(HFSE)であるZrおよびNbの強い正の異常を示した。緑色ヒスイの希土類元素パターンはだいぶ少なく抑えられているようだが、白や黒のヒスイと比べるとかなり高く、Sr、Zr、Hfは強い正の異常を示す。この結果はMorishita et al.(2007)による結論とも合致し、それは、沈み込み帯における糸魚川-青海産のヒスイの形成に関連した流体は、珍しくも流体により沈み込み帯にもたらされたLILEおよびHFSEの両方に富んでいて、また、こうした元素は蛇紋岩化したかんらん岩にリサイクルされるというものである。
Chihara K. (1971) Mineralogy and paragenesis of jadeites from the Omi–Kotaki area, Central Japan. Mineralogical Society of Japan, Special paper, No.1, pp.147–156.
Chihara K. (1991) Jade in Japan. In R. Keverne, Ed., Jade. Van Nostrand Reinhold, New York, 1991), pp.216–217.
Essene E.J. (1967) An occurrence of cymite in the Franciscan formation, California. American Mineralogist, Vol. 52, pp. 1885–1890.
Fukuyama M., Ogasawara M., Horie K., Lee D.C. (2013) Genesis of jadeite–quartz rocks in Yorii area of the Kanto Mountains, Japan. Journal of Asian Earth Sciences, Vol.63, pp.206–217,
http://dx.doi.org/10.1016/j.jseaes.2012.10.031
Harlow G.E., Sorensen S.S. (2005) Jade (nephrite and jadeitite) and serpentinite: Metasomatic connections. International Geology Review, Vol.47, No.2, pp.113–146, 10.2747/0020–6814.47.2.113
Kawano Y. (1939) A new occurrence of jade (jadeite) in Japan and its chemical properties. Journal of the Japanese Association of Mineralogists, Petrologies and Economic Geologists, No. 22, pp. 195–201 (in Japanese).
Lu R. (2012) Color origin of lavender jadeite: An alternative approach. G&G, Vol. 48, No. 8, pp. 273– 283, http://dx.doi.org/10.5741/GEMS.48.4.273
Miyazoe T., Nidshiyama T., Uyeta K., Miyazaki K., Mori Y. (2009) Coexistence of pyroxene jadeite, omphacite, and diopside–omphacite rock from a serpentinite mélange in the Kurosegawa zone of central Kyushu, Japan. American Mineralogist, Vol. 9, No. 1, pp. 34–40.
Morishita T., Arai S., Ishida Y. (2007) Trace elements compositions of jadeite (+omphacite) in jadeitites from the Itoigawa–Ohmi district, Japan: Implications for fluid processes in subduction zones. Island Arc, Vol. 16, No. 1, pp. 40–56.
Nakamizu M., Okada M., Yamazaki T., Komatsu M. (1989) Metamorphic rocks in the Omi–Renge serpentinite mélange, Hida Marginal Tectonic Belt, Central Japan. Memoirs of the Geological Society of Japan, Vol. 33, pp. 21–35 (in Japanese with English abstract).
Oba,T., Nakagawa,Y., Kanayama,K. and Watanabe,T. (1992) Note on rock-forming minerals in the Joetsu district, Niigata Prefecture, Japan. (5) Lavender jadeite from the Kotaki river. Bull.Joetsu Univ. Educ., Vol.11, No.2, 367–375.
Ohmori K. (1939) Optical properties of jade (jadeite) newly occurred in Japan. Journal of the JapaneseAssociation of Mineralogists, Petrologists and Economic Geologists, No. 22, pp. 201–212 (in Japanese).
Rossman G.R. (1974) Lavender jade. The optical spectrum of Fe3+ and Fe2+→Fe3+intervalence charge transfer in jadeite from Myanmar. American Mineralogist, No. 59, pp. 868–870.
Yokoyama K., Samejima T. (1982) Miscibility gap between jadeite and omphacite. Mineralogical Journal, Vol. 11, pp. 53–61, http://dx.doi.org/10.2465/minerj.11.53
日本鉱物科学会(Japan Association of Mineralogical Science)は平成19年9月に日本鉱物学会と日本岩石鉱物鉱床学会の2つの学会が統合・合併され発足し、現在は大学の研究者を中心におよそ900名の会員数を擁しています。日本鉱物科学会は鉱物科学およびこれに関する諸分野の学問の進歩と普及をはかることを目的としており、「出版物の発行(和文誌、英文誌、その他)」、「総会、講演会、 研究部会、その他学術に関する集会および行事の開催」「研究の奨励および業績の表彰」等を主な事業として活動しています。2016年10月に、一般社団法人日本鉱物科学会として新たな出発の運びと なり、(1) 社会的及び学術界における信頼性の向上、(2) 責任明確化による法的安定、(3) 学会による財産の保有等が確保され、コンプライアンスの高い団体として活動していくことになりました。2018年会・総会は、一般社団法人として前年2017年の愛媛大学での開催に続き2回目の年会・総会になります。
【参考文献】
[1] J. D. Bass and J. B. Parise (2008) Deep earth and recent development in mineral physics. Elements,4, 157–163.
[2] T. Hattori, A. Sano–Furukawa, H. Arima, K. Komatsu, A. Yamada, Y. Inamura, T. Nakatani, Y. Seto, T. Nagai, W. Utsumi, T. Iitaka, H. Kagi, Y. Katayama, T. Inoue, T. Otomo, K. Suzuya, T. Kamiyama, M. Arai, T. Yagi (2015) Design and performance of high–pressure PLANET beamline at pulsed neutron source at J–PARC. Nuclear Instruments and Methods in Physics Research A, 780, 55.
[3] O. Navon (1991) High internal pressures in diamond fluid inclusions determined by infrared absorption. Nature, 353, 746.
[4] M. Schrauder, O. Navon (1993) Solid carbon dioxide in a natural diamond. Nature, 365, 42.
[5] H. Kagi, R. Lu, P. Davidson, A. F. Goncharov, H.–k. Mao, R. J. Hemley (2000) Evidence for ice VI as an inclusion in cuboid diamonds from high P–T near infrared spectroscopy. Mineralogical Magazine, 64, 1057.
[6] O. Tschauner, S. Huang, E. Greenberg, V. B. Prakapenka, C. Ma, G. R. Rossman, A. H. Shen, D. Zhang, M. Newville, A. Lanzirotti, K. Tait (2018) Ice–VII inclusions in diamonds: Evidence for aqueous fluid in Earth’s deep mantle. Science 359, 1136.
[7] B.H. Scott Smith, R.V. Danchin, J.W. Harris, K.J. Stracke (1984) Kimberlites near Orroroo, South Australia. In: Kornprobst, J. (Ed.), Kimberlites I: Kimberlites and related rocks. Elsevier, Amsterdam, pp. 121–142.
[8] B. Harte, J.W. Harris, M.T. Hutchison, G.R. Watt, M.C. Wilding (1999) Lower mantle mineral associations in diamonds from Sao Luiz, Brazil. In: Fei, Y., Bertka, C.M., Mysen, B.O. (Eds.), Mantle Petrology: Field Observations and High Pressure Experimentation: A Tribute to Francis R. (Joe) Boyd: Geochemical Society Special Publication No. 6, pp. 125–153.
[9] B. Harte (2010) Diamond formation in the deep mantle: the record of mineral inclusions and their distribution in relation to mantle dehydration zones. Mineralogical Magazine, 74, 189.
[10] F. Kaminsky (2012) Mineralogy of the lower mantle: A review of ‘super–deep’ mineral inclusions in diamond. Earth–Science Reviews, 110, 127.
[11] F. Nestola, N. Korolev, M. Kopylova, N. Rotiroti, D. G. Pearson, M. G. Pamato, M. Alvaro, L. Peruzzo, J. J. Gurney, A. E. Moore, J. Davidson (2018) CaSiO3 perovskite in diamond indicates the recycling of oceanic crust into the lower mantle. Nature 555, 237.
[12] M. J. Walter, S.C. Kohn, D. Araujo, G. P. Bulanova, C. B. Smith, E. Gaillou, J. Wang, A. Steele, S. B. Shirey (2011) Deep mantle cycling of oceanic crust: Evidence from diamonds and their mineral inclusions. Science, 334, 54.
[13] D.A. Zedgenizov, H. Kagi, V.S. Shatsky, A.L. Ragozin (2014) Local variations of carbon isotope composition in diamonds from São–Luis (Brazil): Evidence for heterogenous carbon reservoir in sublithospheric mantle. Chemical Geology, 363, 114.
[14] D. G. Pearson, F. E. Brenker, F. Nestola, J. McNeill, L. Nasdala, M. T. Hutchison, S. Matveev, K. Mather, G. Silversmit, S. Schmitz, B. Vekemans, L. Vincze (2014) Hydrous mantle transition zone indicated by ringwoodite included within diamond. Nature 507, 221.
[15] D. L. Kohlstedt, H. Keppler, D. C. Rubie (1996) Solubility of water in the a,b and g phases of (Mg,Fe)2SiO4. Contributions to Mineralogy and Petrology, 123, 345.
[16] F. Kaminsky, R. Wirth (2017) Nitrides and carbonitrides from the lowermost mantle and their importance in the search for Earth’s “lost” nitrogen. American Mineralogist, 102, 1667.
[17] J. Rudloff–Grund, F.E. Brenker, K. Marquardt, D. Howell, A. Schreiber, S.Y. O’Reilly, W.L. Griffin, F.V. Kaminsky (2016) Nitrogen nanoinclusions in milky diamonds from Juina area, Mato Grosso State, Brazil. Lithos, 365, 57.
[18] H. Kagi, D. A. Zedgenizov, H. Ohfuji, H. Ishibashi (2016) Micro– and nano–inclusions in a superdeep diamond from Sao Luiz, Brazil. Geochemistry International, 54, 834.
[19] O. Navon, R. Wirth, C. Schmidt, B. M. Jablon, A. Schreiber, S. Emmanuel (2017) Solid molecular nitrogen (δ–N2) inclusions in Juina diamonds: Exsolution at the base of the transition zone. Earth and Planetary Science Letters, 464, 237.
[20] E. M. Smith, S. B. Shirey, S. H. Richardson, F. Nestola, E. S. Bullock, J. Wang, W. Wang (2018) Blue boron–bearing diamonds from Earth’s lower mantle. Nature, 560, 84–87.
[21] H. Kagi, S. Odake, S. Fukura, and D. Zedgenizov D. (2009) Raman spectroscopic estimation of depth of diamond origin: technical developments and the application. Russian Geology and Geophysics, 50, 1183–1187
[22] N.J. Cayzer, S. Odake, B. Harte and H. Kagi (2008) Plastic deformation of lower mantle diamonds by inclusion phase transformations. European Journal of Mineralogy, 20, 333–339
2015年頃から世界的な宝石市場において大量のメレサイズのHPHT合成ダイヤモンドが流通を始めており、業界関係者はその対応に追われている。紫外線透過性、紫外線発光、赤外分光などを応用した各種の判別器機が開発されているが、装置の原理が未公表のブラックボックス的なものも販売されている。これらの中で紫外線下での燐光を検出する装置はルースでもジュエリーにセットされた状態でも短時間で検査できるという利便性があり、国内の輸入業者を中心に幅広く利用されている。
2018年4月、香港の器機開発業者から「HPHT–grown diamonds might escape detection as synthetics, once they are treated with irradiation」というアラートが配信された(Diamond Services, 2018)。HPHT合成ダイヤモンドは紫外線照射後、ミリ秒~数十秒の燐光があり、燐光を示さない天然と区別する事ができる。しかし、一旦照射処理が施されると室温で燐光を測定する装置では識別ができなくなるというものである。このアラートに呼応してIIDGRやGIAは自社製の判別装置における信頼性に問題はないと報告している(Rapaport News, 2018)。
さて、このような背景のもと、電子線照射により無色~ほぼ無色のHPHT合成ダイヤモンドの燐光が減衰するのかの実験を行った。実験に用いた試料は0.008–0.032ctの見かけ上無色の中国製HPHT合成ダイヤモンドで、それぞれ5個ずつAとBの2つのグループに分けて段階的に照射を行った。
電子線はコッククロフトウォルトン型の放射線発生装置を用いて、
試料Aグループには総線量:1.0×1015e–/cm2、10.0×1015e–/cm2、50.0×1015e–/cm2、
Bグループには総線量:5.0×1015e–/cm2、25.0×1015e–/cm2、100.0×1015e–/cm2をそれぞれ照射した。
これらを国内での利用率の高い中国製の判別装置を用いて照射前後の蛍光と燐光の写真を撮影した。その結果を図–1と図–2に示す。試料Aグループにおいて総線量:1.0×1015e–/cm2では燐光に減衰は見られないが、10.0×1015e–/cm2では若干の燐光の減衰が見られた。50.0×1015e–/cm2では明らかな減衰が見られ、②の試料では完全に消滅した。試料Bグループにおいては総線量:5.0×1015e–/cm2で燐光に若干の減衰が見られ、25.0×1015e–/cm2では明らかな減衰が見られ、①の試料では完全に消滅した。100.0×1015e–/cm2では未処理で燐光の非常に強かった試料②を除いて他の4個はすべて燐光が消失した。図–3は試料Aグループの50.0×1015e–/cm2照射後の試料と燐光の写真である。試料①③⑤は白色のグレーダーの上に乗せてルーペで観察するとわずかに青色味を感じる。これは電子線照射により、GR1センタが形成したためである。しかし、この程度の淡い色調はジュエリーにセットされてしまえばほぼ無色に見えると思われる。図–4は試料Bグループの100.0×1015e–/cm2照射後の試料と燐光の写真である.グレーダーに乗せてルーペで観察すると、②の試料はほぼ無色のままであったが、他の4個は明らかなGR1センタに因る青色味が感じられた。このように照射する電子線の強度が強いとGR1センタに因り青色に着色する。青色に着色する程度の強度で照射されたものはほぼ燐光がなくなったが(5個中4個)、ほぼ無色のまま変化のない強度では燐光が完全に消滅したのは一部(5個中1個)であった。
BeとNb、Taには非常によい相関関係が認められるが、Tiとは相関関係は認められない。また、分析点01–57について、Be–Nb、Be–Taの濃度プロットを行った結果を図4に示す。これらは筆者らの先行研究でカンボジア、ナイジェリア、ラオス等の玄武岩関連のブルーサファイアに見られた相関関係に一致する(文献4)。Be、Nb、Taの濃度関係からmol比を見積もったところ、Be : Nb : Ta ≒ 3 : 1 : 4の結果を得ることができた。
図4 diego10のBeとNb、Taの濃度関係
« FIB(Focused Ion Beam、集束イオンビーム)装置とは »
FIB装置は、集束したイオンビームを試料に照射することにより観察や加工を行う装置である。
図A FIB装置
図B FIB装置の概略図
図Aは本研究で用いたFIB装置、FEI社Quanta200 3DS(京都大学地球惑星科学科地質学鉱物学分野鉱物学研究室所属)の写真である。
SEM(Scanning Electron Microscopy、走査型電子顕微鏡)で観察しながら、所定の位置をnm〜μmの正確さで切り出すことが可能である。TEM(Transmission Electron Microscopy、透過型電子顕微鏡)観察試料には厚さ100 nm程度の薄膜に試料を切り出さなければならないため、TEM観察試料の作成にFIBを使用することが近年では一般的である。
図BはFIB装置の概略図である。
LIMSは液体金属イオン源(Liquid Metal Ion Source)の略であり、イオン材料として通常Ga(ガリウム)が用いられる。Ga(ガリウム)をイオン材料として使う理由には原子量が69.723と比較的重く、加工に十分なスパッタリング速度が得られること、また融点が29.8℃と低く、加熱後は過冷却減少で室温でも液体の状態を維持でき、針材料のW(タングステン)と反応せず流れが安定すること、が挙げられる。このLIMSから放出されたイオンを設定領域に照射し、加工を行うのがFIB装置ということになる。
マダガスカル、ディエゴ産ブルーサファイアに含まれるBeの起源についてLA–ICP–MS、TEMを用いて検討を行った。LA–ICP–MS分析の結果、Beの濃度とNb、Taの濃度には他の玄武岩関係のブルーサファイアと同様の相関関係があり、それらのモル比はBe : Nb : Ta ≒ 3 : 1 : 4であることが新たにわかった。また、透過型電子顕微鏡観察の結果、Beが含まれる部分には幅10 nm、長さ40 nm程度のナノインクルージョンが存在することが判明し、Ti、Nb、Taが含まれており、Ti、Taのモル比はTi : Ta ≒ 4 : 1程度であることがわかった。回折像を調べた結果、コランダムとは相が異なる鉱物であることがわかったが、相は明らかにできなかった。LA–ICP–MSとTEMの結果を合わせると、ナノインクルージョンはBe、Ti、Nb、Taからなる鉱物であり、検出されるBeはナノインクルージョンの存在密度に比例すると考えられる。また、Be、Ti、Nb、Taのモル比はBe : Ti : Nb : Ta ≒ 3 : 16 : 1 : 4程度であり、本研究では構造を決定することはできなかったが、Shen et al. (2012)(文献5)の結果と併せて考慮すると、知られていない未知の鉱物である可能性がある。
◆文献
1.Emmett J.L., Scarrat K., McClure S.F., Moses T., Douthit T.R., Hughes R., Novak S., Shigley J.E., Wang W., Bordelon O., Kane R.E. (2013) Beryllium diffusion of Ruby and Sapphire. Gems & Gemology, 39(2), 84–135
2.Emmett, J.E., Wang W. (2007) The Corundum group, Memo to the Corundum Group: How much beryllium is too much in blue sapphire – the role of quantitative spectroscopy. 26 August 2007
3.Shen A., McClure S., Breeding C. M., Scarratt K., Wang W., Smith C., Shigley J. (2007) Beryllium in Corundum: The Consequences for Blue Sapphire. GIA Insider, Vol.9, Issue 2
4.Emori K., Kitawaki H., Okano M., (2014) Beryllium-Diffused Corundum in the Japanese Market, and Assessing the Natural vs. Diffused Origin of Beryllium in Sapphire. Journal of Gemmology, 34(2), 2014, 130–137
5.Shen A. and Wirth R. (2012) Beryllium-bearing nano-inclusions identified in untreated Madagascar sapphire. Gems and Gemology, 48(2), 150–151